Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Math Methods Med ; 2022: 4168619, 2022.
Article in English | MEDLINE | ID: covidwho-1639379

ABSTRACT

Since December 2019, a novel coronavirus (COVID-19) has spread all over the world, causing unpredictable economic losses and public fear. Although vaccines against this virus have been developed and administered for months, many countries still suffer from secondary COVID-19 infections, including the United Kingdom, France, and Malaysia. Observations of COVID-19 infections in the United Kingdom and France and their governance measures showed a certain number of similarities. A further investigation of these countries' COVID-19 transmission patterns suggested that when a turning point appeared, the values of their stringency indices per population density (PSI) were nearly proportional to their absolute infection rate (AIR). To justify our assumptions, we developed a mathematical model named VSHR to predict the COVID-19 turning point for Malaysia. VSHR was first trained on 30-day infection records prior to the United Kingdom, Germany, France, and Belgium's known turning points. It was then transferred to Malaysian COVID-19 data to predict this nation's turning point. Given the estimated AIR parameter values in 5 days, we were now able to locate the turning point's appearance on June 2nd, 2021. VSHR offered two improvements: (1) gathered countries into groups based on their SI patterns and (2) generated a model to identify the turning point for a target country within 5 days with 90% CI. Our research on COVID-19's turning point for a country is beneficial for governments and clinical systems against future COVID-19 infections.


Subject(s)
COVID-19/epidemiology , Epidemics , Epidemiological Models , SARS-CoV-2 , Algorithms , Belgium/epidemiology , COVID-19/transmission , Computational Biology , Computer Simulation , Epidemics/statistics & numerical data , France/epidemiology , Germany/epidemiology , Humans , Malaysia/epidemiology , United Kingdom/epidemiology
2.
Nonlinear Dyn ; 106(2): 1397-1410, 2021.
Article in English | MEDLINE | ID: covidwho-1252177

ABSTRACT

Initially found in Hubei, Wuhan, and identified as a novel virus of the coronavirus family by the WHO, COVID-19 has spread worldwide at exponential speed, causing millions of deaths and public fear. Currently, the USA, India, Brazil, and other parts of the world are experiencing a secondary wave of COVID-19. However, the medical, mathematical, and pharmaceutical aspects of its transmission, incubation, and recovery processes are still unclear. The classical susceptible-infected-recovered model has limitations in describing the dynamic behavior of COVID-19. Hence, it is necessary to introduce a recursive, latent model to predict the number of future COVID-19 infection cases in the USA. In this article, a dynamic recursive and latent infection model (RLIM) based on the classical SEIR model is proposed to predict the number of COVID-19 infections. Given COVID-19 infection and recovery data for a certain period, the RLIM is able to fit current values and produce an optimal set of parameters with a minimum error rate according to actual reported numbers. With these optimal parameters assigned, the RLIM model then becomes able to produce predictions of infection numbers within a certain period. To locate the turning point of COVID-19 transmission, an initial value for the secondary infection rate is given to the RLIM algorithm for calculation. RLIM will then calculate the secondary infection rates of a continuous time series with an iterative search strategy to speed up the convergence of the prediction outcomes and minimize the maximum square errors. Compared with other forecast algorithms, RLIM is able to adapt the COVID-19 infection curve faster and more accurately and, more importantly, provides a way to identify the turning point in virus transmission by searching for the equilibrium between recoveries and new infections. Simulations of four US states show that with the secondary infection rate ω initially set to 0.5 within the selected latent period of 14 days, RLIM is able to minimize this value at 0.07 and reach an equilibrium condition. A successful forecast is generated using New York state's COVID-19 transmission, in which a turning point is predicted to emerge on January 31, 2021. Supplementary Information: The online version contains supplementary material available at 10.1007/s11071-021-06520-1.

SELECTION OF CITATIONS
SEARCH DETAIL